
24. Reshaping history
In the last chapter we built the cherry-pick command, which lets us copy a set of commits
from their original place in the history graph onto the tip of another branch. We’ll now see how
this ability can be used to carry out most of Git’s other history manipulation commands.

24.1. Changing old commits

The reset and commit commands by themselves allow us to replace a sequence of commits at
the end of a branch. But, what if we wanted to change commits that are few steps behind the
current HEAD? For example, we might want to amend the content or message of an old commit,
or place commits in a different order, or drop them from the history entirely. Let’s see how we
can use cherry-picking to accomplish these tasks.

24.1.1. Amending an old commit

Imagine we have the following history, where master is checked out:

Figure 24.1. Sequence of five commits

 A B C D E
 o <---- o <---- o <---- o <---- o
 |
 [master] <== [HEAD]

It turns out that the code we committed in commit B was lacking tests, and we’d like to go back
and add some, so the code and its tests are recorded in the same place. The aim is to produce a
copy of the above history, in which B has been altered. That is, we want to produce a commit
that has A as its parent, and is followed by copies of C, D and E. These copies will introduce the
same changes as C, D and E, rather than having the same content; they should include whatever
new content we introduce into the modified copy of B.

We’ll begin by performing a hard reset to commit B. This moves the current branch pointer to
B and updates the index and workspace to match. The repo now reflects the content stored in
B, and ORIG_HEAD points at E.

Figure 24.2. Resetting HEAD to the target commit

$ jit reset --hard @~3

 A B C D E
 o <---- o <---- o <---- o <---- o
 | |
 [master] <== [HEAD] [ORIG_HEAD]

Since we now have commit B checked out, we can add the tests we want, add the updated files
to the index, and use commit --amend to replace B with a modified version, B'.

475

Reshaping history

Figure 24.3. Amending the target commit

$ jit add .
$ jit commit --amend

 A B C D E
 o <---- o <---- o <---- o <---- o
 \ |
 \ [ORIG_HEAD]
 \ B'
 o
 |
 [master] <== [HEAD]

We can now replay the rest of the commits on top of B' using cherry-pick; since we originally
reset to revision @~3, the range ORIG_HEAD~3..ORIG_HEAD will give us the commits we want,
producing commits C', D' and E' which contain the changes dBC, dCD and dDE respectively.
Figure 24.4. Cherry-picking the remaining history

$ jit cherry-pick ORIG_HEAD~3..ORIG_HEAD

 A B C D E
 o <---- o <---- o <---- o <---- o
 \
 \
 \ B' C' D' E'
 o <---- o <---- o <---- o
 |
 [master] <== [HEAD]

The current branch pointer now refers to the tip of the modified history. Remember that since
each commit contains its parent’s ID, replacing an old commit means generating new copy of
all the downstream commits. Above, we need a copy of C with its parent field replaced by the
ID of B', a copy of D whose parent is C', and so on. Even if we only changed the message of
B and not its tree, we’d need to make copies of all the downstream commits, because changing
a commit’s parent will change that commit’s own ID.

So, although it may only appear that we’ve modified commit B, we have in fact generated
a whole new history that diverges from the parent of B. The original history still exists, but
may no longer have any refs pointing at it. It’s important to remember this distinction between
commits that have the same content or diff, but are actually distinct objects in the history, as it
affects what happens when you come to merge such modified branches later.

24.1.2. Reordering commits

Part of managing your Git history involves arranging commits so they tell a clear story of the
project, so people can see how and why the code has been changed over time. For this reason
you may want to reorder the commits on a branch before sharing that branch with your team.

Let’s say we have the following history containing six commits.
Figure 24.5. Sequence of six commits

 A B C D E F
 o <---- o <---- o <---- o <---- o <---- o
 |
 [master] <== HEAD

476

Reshaping history

We’ve decided that commits B and C should be in the opposite order. When we were writing
these commits, we had a lot of uncommitted work and then added it in small pieces, breaking
it into lots of small commits. However it turns out that the code in B relies on a function that
wasn’t committed until C, so this version of the codebase won’t build and may confuse anyone
reading the history later. We’d like to effectively swap B and C so their changes appear in a
workable order.

For this workflow, we won’t rely on ORIG_HEAD, because we’ll need to use cherry-pick
multiple times, and if we decide to abort, that will overwrite ORIG_HEAD. So rather than a hard
reset, we’ll check out a branch at the commit before the ones we want to swap. HEAD now points
at A and the index and workspace reflect that.

Figure 24.6. Creating a fixup branch

$ jit branch fixup @~5
$ jit checkout fixup

 A B C D E F
 o <---- o <---- o <---- o <---- o <---- o
 | |
 [fixup] <== [HEAD] [master]

We want to end up with a history where B and C have swapped places, which we can do by
cherry-picking C, then B, then the rest of the commits after C. Note that we can’t do this by
running cherry-pick master~3 master~4 master~3..master, because the use of the range
in the last argument means first two arguments won’t actually get picked. We need to pick
individual commits, and then a range to finish things off.

Figure 24.7. Cherry-picking the reordered commits

$ jit cherry-pick master~3 master~4

 A B C D E F
 o <---- o <---- o <---- o <---- o <---- o
 \ |
 \ [master]
 \
 \ C' B'
 o <---- o
 |
 [fixup] <== [HEAD]

This cherry-pick has effectively swapped B and C, producing C' and B'. When we reorder
commits, we’ll get a conflict if they don’t commute1. But, even if the commits do commute
textually, reordering might result in versions of the codebase that don’t run, because one commit
functionally depended on another. Always make sure your commits continue to build after
amending the history.

Next, we cherry-pick the rest of the commits using a range, beginning with the latest commit
we reordered:

1Section 18.4.1, “Concurrency, causality and locks”

477

Reshaping history

Figure 24.8. Cherry-picking the remaining history

$ jit cherry-pick master~3..master

 A B C D E F
 o <---- o <---- o <---- o <---- o <---- o
 \ |
 \ [master]
 \
 \ C' B' D' E' F'
 o <---- o <---- o <---- o <---- o
 |
 [fixup] <== [HEAD]

And finally, we can point our original branch at this new history by checking it out, resetting
to the fixup branch, and then deleting that branch as we no longer need it.

Figure 24.9. Resetting the original branch

$ jit checkout master
$ jit reset --hard fixup
$ jit branch -D fixup

 A B C D E F
 o <---- o <---- o <---- o <---- o <---- o
 \ |
 \ [ORIG_HEAD]
 \
 \ C' B' D' E' F'
 o <---- o <---- o <---- o <---- o
 |
 [master] <== [HEAD]

You can use this technique to arbitrarily reorder commits, drop commits by not cherry-picking
them into the new history, amend old commits, and so on. Next we’ll look at how Git’s other
history manipulation tools can be built on top of this operation.

24.2. Rebase

Git’s rebase command is used to perform all sorts of changes to a project’s history. It is highly
configurable, but in its default form its job is to take a history that looks like this:

Figure 24.10. History with two divergent branches

 A B C D
 o <---- o <---- o <---- o [master]
 \
 \
 \ E F G
 o <---- o <---- o [topic] <== [HEAD]

And reshape it so that your current branch effectively forks off from the end of some other
branch, rather than its original start point. For example, running git rebase master on the
above history will produce this outcome:

478

Reshaping history

Figure 24.11. Branch after rebasing to the tip of master

 A B C D
 o <---- o <---- o <---- o [master]
 \
 \
 \ E' F' G'
 o <---- o <---- o [topic] <== [HEAD]

It’s called rebasing because you are literally changing the commit your branch is based on;
detaching it from its original start point and attaching it at the end of a branch so its history
incorporates all the changes from that branch. This is often done to keep the history clean
(avoiding merge commits that don’t add any meaningful information), or to sort out any
potential merge conflicts with another branch before merging into it.

The documentation2 will tell you that the rebase command saves the details of all the commits
on your branch (topic in our example) that aren’t on the upstream branch — that’s the branch
you’re rebasing onto, master in the above example. Then it resets your current branch to the
tip of the upstream branch, and replays the saved commits on top of it. With our knowledge of
the building blocks we have so far, we can translate this into a couple of commands.

First, from our starting state, we’ll do a hard reset to point our branch at the revision we want
to rebase onto. This leaves ORIG_HEAD pointing at the original tip of our branch.

Figure 24.12. Resetting the current branch to the upstream branch

$ jit reset --hard master

 A B C D
 o <---- o <---- o <---- o
 \ |
 \ [master]
 \ [topic] <== [HEAD]
 \
 \ E F G
 o <---- o <---- o
 |
 [ORIG_HEAD]

Then we want to replay the commits from topic that aren’t on master, on top of master. Since
HEAD is now pointing at the upstream branch, we can select the required commits with the range
..ORIG_HEAD, and we can use cherry-pick to replay these commits.

2https://git-scm.com/docs/git-rebase

479

Reshaping history

Figure 24.13. Cherry-picking the branch onto the upstream

$ jit cherry-pick ..ORIG_HEAD

 A B C D E' F' G'
 o <---- o <---- o <---- o <---- o <---- o <---- o
 \ | |
 \ [master] [topic] <== [HEAD]
 \
 \
 \ E F G
 o <---- o <---- o
 |
 [ORIG_HEAD]

And hey presto, we now have an equivalent of our original branch, but incorporating C and D
rather than diverging at B. As usual, the original commits still exist and can be accessed via
the ORIG_HEAD reference.

24.2.1. Rebase onto a different branch

A common variation is to use the --onto option to transplant the commit range onto a different
starting commit. For example, say we have the following history in which we forked off from
the topic branch to fix a bug, which we did using commits G and H.

Figure 24.14. History with three chained branches

 A B C D
 o <---- o <---- o <---- o [master]
 \
 \
 \ E F
 o <---- o [topic]
 \
 \
 \ G H
 o <---- o [bug-fix] <== [HEAD]

This bug fix doesn’t actually depend on the work in topic and we’d like to transplant it onto
master. The --onto option can do just that:

Figure 24.15. Rebase onto a different branch

$ git rebase --onto master topic

 A B C D
 o <---- o <---- o <---- o [master]
 \ \
 \ \
 \ E F \ G' H'
 o <---- o o <---- o
 | |
 [topic] [bug-fix] <== [HEAD]

In general, rebase --onto <rev1> <rev2> makes Git reset the current branch to <rev1>,
and then replay all the commits on the original branch that aren’t reachable from <rev2>.

480

Reshaping history

The revision arguments don’t have to be branch names, they can be any revision specifier.
And so, this is equivalent to running reset --hard <rev1> followed by cherry-pick
<rev2>..ORIG_HEAD. First we do a hard reset:

Figure 24.16. Resetting to the target branch

$ jit reset --hard master

 A B C D
 o <---- o <---- o <---- o [master]
 \ [bug-fix] <== [HEAD]
 \
 \ E F
 o <---- o [topic]
 \
 \
 \ G H
 o <---- o [ORIG_HEAD]

Then we cherry-pick the required commits:

Figure 24.17. Cherry-picking the original branch

$ jit cherry-pick topic..ORIG_HEAD

 A B C D
 o <---- o <---- o <---- o [master]
 \ \
 \ \
 \ E F \ G' H'
 o <---- o o <---- o [bug-fix] <== [HEAD]
 / \
 [topic] \
 \ G H
 o <---- o [ORIG_HEAD]

So we can see that cherry-pick can be used to arbitrarily transplant a range of commits to any
other point in the graph. The real rebase command can do much more than this and deal with
other complications in the history, for example discarding or preserving merge commits, and
dropping commits whose changes are already present in the target branch. However, the core
functionality in most cases can be done with a reset and a cherry-pick.

24.2.2. Interactive rebase

Git’s rebase --interactive command3 provides the ability to make more complicated
changes to the history. It will select the commit range to be transplanted and then present this list
to you in your editor, letting you choose what should be done with each commit. The commits
can be arbitrarily reordered, and a range of commands can be applied to each one. A few of
these commands are straightforward to replicate using what we already know.

For example, pick just cherry-picks the given commit. drop does nothing; the given commit
is not cherry-picked, and this is equivalent to deleting it from the list. reword cherry-picks a

3https://git-scm.com/docs/git-rebase#_interactive_mode

481

Reshaping history

commit but opens the editor for you to change the commit message. edit cherry-picks the
commit but then pauses to let you make arbitrary changes — amending the HEAD commit, adding
some new commits of your own, etc. — before continuing with the rest of the list.

There are a couple of commands that are a little more complicated, but can still be replicated
using our existing tools: squash and fixup.

We have already seen that a combination of reset and commit can be used to squash the last
few commits on a branch4. The squash command in rebase works very similarly, it just lets
you deal with commits that are deeper in the history, so a little extra work is needed. Let’s say
we have the following history and want to squash commit C into B.

Figure 24.18. History before squashing

 A B C D
 o <---- o <---- o <---- o
 |
 [master] <== [HEAD]

What this means is that we want commits B and C to be effectively replaced by a single commit
containing the same tree as C, with the rest of the history following on after. So first, we need to
get the index into the state of commit C, and we’ll do that by checking out a temporary branch
at that position.

Figure 24.19. Checking out the desired tree

$ jit branch squash @^
$ jit checkout squash

 A B C D
 o <---- o <---- o <---- o
 | |
 | [master]
 |
 [squash] <== [HEAD]

Now we proceed as before: a soft reset points HEAD at the previous commit, but leaves the index
unchanged, so it still contains the tree of C.

Figure 24.20. Resetting to the parent commit

$ jit reset --soft @^

 A B C D
 o <---- o <---- o <---- o
 | |
 | [master]
 |
 [squash] <== [HEAD]

Now, we can use commit --amend to replace B with a new commit whose tree is that of C, but
we’re given the message from B as a starting point in the editor.

4Section 22.3, “Reusing messages”

482

Reshaping history

Figure 24.21. Amending the parent commit to contain the squashed changes

$ jit commit --amend

 A B C D
 o <---- o <---- o <---- o
 \ |
 \ [master]
 \
 \ B+C
 o
 |
 [squash] <== [HEAD]

We can then cherry-pick the rest of the branch to complete the history.

Figure 24.22. Cherry-picking the remaining history

$ jit cherry-pick master

 A B C D
 o <---- o <---- o <---- o
 \ |
 \ [master]
 \ B+C D'
 o <---- o
 |
 [squash] <== [HEAD]

Finally, we reset our original branch to point at this new history, and delete the temporary
branch.

Figure 24.23. Cleaning up branch pointers after squashing

$ jit checkout master
$ jit reset --hard squash
$ jit branch -D squash

 A B C D
 o <---- o <---- o <---- o
 \ |
 \ [ORIG_HEAD]
 \ B+C D'
 o <---- o
 |
 [master] <== [HEAD]

Git’s squash command actually combines the messages of B and C when creating the B+C
commit, but I’ll leave that as an exercise for the reader. The above illustrates what is happening
at the level of the history and the contents of commits.

The fixup command is described as being just like squash, except it only keeps the first
commit’s message, not that of the squashed commit. However I tend to use it slightly
differently; I usually reach for it when I notice a commit far back in the history needs to be
changed. I’ll make a commit on top of the current HEAD that includes the additional changes, and
then use rebase to move this fix-up commit back through the history so it follows the commit
I want to change. I can then combine them with the fixup command. You can absolutely use

483

Reshaping history

squash to do this, it’s just a slightly different use case to combining two commits that are
already adjacent.

This workflow combines a reordering with the squash technique we’ve just seen. Let’s start
with our familiar linear history:

Figure 24.24. History before a fix-up

 A B C
 o <---- o <---- o
 |
 [master] <== [HEAD]

Imagine that we’ve noticed that commit B isn’t quite what we want, and we’d like to change
its contents. We can begin by writing a new commit D than contains the amendments we’d
like to apply to B.

Figure 24.25. Creating a fix-up commit

$ jit commit --message "D"

 A B C D
 o <---- o <---- o <---- o
 |
 [master] <== [HEAD]

Now, we want to combine commits B and D, which means creating a commit whose tree is TB
+ dCD — the tree from B plus the change introduced by D. Another way to think of this is that
we want to squash D into B, but first we need to relocate D so it’s next to B.

Let’s start a new branch at B:

Figure 24.26. Starting a fix-up branch

$ jit branch fixup @~2
$ jit checkout fixup

 A B C D
 o <---- o <---- o <---- o
 | |
 | [master]
 |
 [fixup] <== [HEAD]

Then, we can cherry-pick D onto this branch. The tree of this commit D' will be TB + dCD as
required.

Figure 24.27. Cherry-picking the fix-up commit

$ jit cherry-pick master

 A B C D
 o <---- o <---- o <---- o
 \ |
 \ D' [master]
 o
 |
 [fixup] <== [HEAD]

484

Reshaping history

We can now squash B and D' together using the procedure we used above. We soft-reset so
that HEAD points at B but the index retains the content of D'. We then use commit --amend to
commit this tree with A as the parent, keeping the message from B.

Figure 24.28. Creating a squashed commit containing the fix-up

$ jit reset --soft @^
$ jit commit --amend

 A B C D
 o <---- o <---- o <---- o
 \ \ |
 \ \ D' [master]
 \ o
 \
 \ B+D'
 o
 |
 [fixup] <== [HEAD]

Finally, we cherry-pick the remaining history — commit C — onto our temporary branch, reset
our original branch to this new history, and delete the temporary branch.

Figure 24.29. History following a relocated fix-up commit

$ jit cherry-pick master^
$ jit checkout master
$ jit reset --hard fixup
$ jit branch -D fixup

 A B C D
 o <---- o <---- o <---- o
 \ \ |
 \ \ D' [ORIG_HEAD]
 \ o
 \
 \ B+D' C'
 o <---- o
 |
 [master] <== [HEAD]

The rebase command is a much more direct way of performing these changes and can do
much more besides, but conceptually most of its behaviour can be replicated with commands
we already have, if a little laboriously. This process illustrates that although commits primarily
store content rather than changes, it is possible to treat a commit as the implied difference
between its content and that of its parent. These changes can be arbitrarily recombined using
the merge machinery to make complex changes to the project history.

24.3. Reverting existing commits

It’s certainly useful to be able to edit the history of your branch, but it becomes a problem once
you’ve shared your history with other teammates. As an example, let’s imagine two coworkers,
Alice and Bob, that are each working on their own branch of a project. The last commit each
developer has in common is C.

485

Reshaping history

Figure 24.30. History with concurrent edits

 A B C D E
 o <---- o <---- o <---- o <---- o [alice]
 \
 \
 \ F G H
 o <---- o <---- o [bob]

Now, suppose Alice decides C should not have been committed, and wants it removed from the
history. She resets to B and then cherry-picks D and E to construct the history she actually wants.

Figure 24.31. Alice removes a shared commit from the history

 D' E'
 o <---- o [alice]
 /
 /
 A B / C D E
 o <---- o <---- o <---- o <---- o
 \
 \
 \ F G H
 o <---- o <---- o [bob]

The problem is that C has already been shared with another developer; Bob has this commit in
his history, and his branch now diverges from Alice’s at B. When Alice goes to merge in Bob’s
changes, this is the resulting history:

Figure 24.32. Merging reintroduces a dropped commit

 D' E' M
 o <---- o <-------------------- o [alice]
 / /
 / /
 A B / C D E /
 o <---- o <---- o <---- o <---- o /
 \ /
 \ /
 \ F G H /
 o <---- o <---- o [bob]

The base of merge M is commit B, and so the changes from commits C, F, G and H will be
incorporated. Alice ends up with a commit that includes content she thought she’d removed!

It’s important to note at this point that Git is not doing anything wrong here. Git is merely a tool
for tracking and reconciling concurrent edits to a set of files, and if the history says that C is a
concurrent edit on one branch, rather than a commit shared by both branches, then that’s how
Git will treat it. The problem is that the history is not a good representation of Alice’s intentions
and understanding of the project. If she wants all the developers to agree that C should be
removed, she either needs to ask everyone to rebase their branches, or include this information
in a better way in the history.

This type of problem arises whenever you rebase commits that have already been fetched by
other developers. If you change the history of commits you’ve pushed, everyone needs to
migrate their changes onto your replacement commits, and this is really hard to get right. It’s

486

Reshaping history

much easier to manage if you commit on top of the existing shared history, with commits that
effectively undo the commits you wanted to remove.

Let’s now imagine that Alice does this. She writes a commit, which we’ll call –C, that removes
the content that was added in C.

Figure 24.33. Committing to undo earlier changes

 A B C D E -C
 o <---- o <---- o <---- o <---- o <---- o [alice]
 \
 \
 \ F G H
 o <---- o <---- o [bob]

Now, when Alice merges from Bob’s branch, the base is C, their original shared commit, and
so only commits F, G and H are incorporated. The changes from C are not reintroduced into
the project.

Figure 24.34. Merging does not reintroduce the removed content

 A B C D E -C M
 o <---- o <---- o <---- o <---- o <---- o <---- o [alice]
 \ /
 \ /
 \ F G H /
 o <---- o <---- o ------'
 |
 [bob]

There are many reasons you’d want to make a change like this. Maybe some temporary code was
added to facilitate a long refactoring, and can now be removed. Maybe a feature flag was used to
incrementally roll a feature out, and is no longer necessary. Maybe you added someone’s public
key to your config management repository and they have since left the company. These are all
situations where you don’t want to expunge the content from history, you just want it not to
exist in your latest version. Since this is a fairly common requirement, Git includes a command
so that you don’t have to construct this inverse commit by hand: the revert command.

24.3.1. Cherry-pick in reverse

The revert command is much like cherry-pick, it just applies the inverse of the changes in
the given commits. In fact if you read their documentation you’ll see that both commands take
the same options and look almost identical in functionality. This is not a coincidence; in fact
the two commands are deeply similar and differ only in how they use the Merge module to
apply changes.

Consider the following history in which each commit modifies one of two files.

Figure 24.35. History with two files

 f.txt = 1 f.txt = 1 f.txt = 4 f.txt = 5
 g.txt = 2 g.txt = 3 g.txt = 3 g.txt = 3
 A B C D
 o <---------- o <---------- o <---------- o
 |
 [master] <== [HEAD]

487

Reshaping history

We’d like to revert commit B, that is, undo the change of g.txt so that it contains its original
value 2.

Figure 24.36. Reverting an old change

 f.txt = 1 f.txt = 1 f.txt = 4 f.txt = 5 f.txt = 5
 g.txt = 2 g.txt = 3 g.txt = 3 g.txt = 3 g.txt = 2
 A B C D -B
 o <---------- o <---------- o <---------- o <---------- o
 |
 [master] <== [HEAD]

What we’re doing here is taking the change introduced by B, that is dAB = { g.txt => [2,
3] }, and inverting it to get { g.txt => [3, 2] }. This is applied to commit D to undo the
change to g.txt. If commit C or D had changed g.txt again to some other value, then this
change would not apply, and we should get a conflict.

The tree we want to end up with in the revert commit –B is T–B = TD – dAB, that is the tree from
D with the effect of B removed. Thus far we’ve only considered adding changes to trees, so
what does it mean to remove them? Well, if dAB is the change required to transform TA into TB,
then the inverse change –dAB should be the change that converts TB into TA. That is, –dAB = dBA.
To calculate the inverse change from a commit, we can just swap the order of the arguments
when generating the tree diff.

Whereas cherry-pick applies dAB by performing a merge between B and D with A as the base,
revert merges A and D with B as the base. If that sounds weird, remember from the previous
chapter that Merge::Resolve does not care about the historical relationship between its inputs,
so we are free to ‘undo’ a commit by using it as the base for a merge involving its parent.

In this case, the differences on each side of the merge are dBA = { g.txt => [3, 2] } and
dBD = { f.txt => [1, 5] }. These do not overlap and so the end result is T–B = TD + dBA
= { f.txt => 5, g.txt => 2 }.

24.3.2. Sequencing infrastructure

Since the revert and cherry-pick commands are so similar and differ only in some minor
details, we can reuse much of the Command::CherryPick class so that both commands share
the same implementation. As a matter of fact, the CherryPick class is already separated into
a set of methods that are specific to cherry-picking, and many that aren’t. I’m going to extract
the latter set into a module called Command::Sequencing that we can use as a base for both
commands. It contains the option definitions and the run method that describes the overall flow
of the command, and various glue methods that execute the Merge::Resolve given a set of
inputs, handle stopping the command on conflicts, and so on.

lib/command/shared/sequencing.rb

module Command

 module Sequencing

 CONFLICT_NOTES = <<~MSG

 ...

 MSG

488

Reshaping history

 def define_options

 def run

 def sequencer

 def resolve_merge(inputs)

 def fail_on_conflict(inputs, message)

 def finish_commit(commit)

 def handle_continue

 def resume_sequencer

 def handle_abort

 def handle_quit

 end

end

This leaves a few methods in CherryPick that are specific to this command. merge_type is
used by fail_on_conflict, handle_abort and handle_quit to trigger the right commit type
in PendingCommit. store_commit_sequence expands the arguments into a list of commits and
stores them, and this will differ for revert, as we’ll see. pick and pick_merge_inputs deal
with constructing the inputs for Merge::Resolve and building the resulting commit.

lib/command/cherry_pick.rb

module Command

 class CherryPick < Base

 include Sequencing

 include WriteCommit

 private

 def merge_type

 def store_commit_sequence

 def pick(commit)

 def pick_merge_inputs(commit)

 end

end

To support the revert command, the sequencer needs a bit of extra functionality. In cherry-
pick, each line in .git/sequencer/todo begins with the word pick, whereas in revert, each
line begins with revert; when we resume the sequencer we need to know which command to
use on each commit. Let’s add a method to Sequencer called revert, and make the pick and
revert methods store the name of the command, not just the given commit.

lib/repository/sequencer.rb

 def pick(commit)

 @commands.push([:pick, commit])

 end

 def revert(commit)

 @commands.push([:revert, commit])

 end

The dump and load methods need to be similarly updated to parse the command at the beginning
of each line, rather assuming all of them will be pick.

489

Reshaping history

lib/repository/sequencer.rb

 def dump

 return unless @todo_file

 @commands.each do |action, commit|

 short = @repo.database.short_oid(commit.oid)

 @todo_file.write("#{ action } #{ short } #{ commit.title_line }")

 end

 @todo_file.commit

 end

 def load

 open_todo_file

 return unless File.file?(@todo_path)

 @commands = File.read(@todo_path).lines.map do |line|

 action, oid, _ = /^(\S+) (\S+) (.*)$/.match(line).captures

 oids = @repo.database.prefix_match(oid)

 commit = @repo.database.load(oids.first)

 [action.to_sym, commit]

 end

 end

To complete the sequencing infrastructure, the resume_sequencer in Command::Sequencing
needs to inspect the action name on each command it fetches, and call either pick or revert
depending on the result.

lib/command/shared/sequencing.rb

 def resume_sequencer

 loop do

 action, commit = sequencer.next_command

 break unless commit

 case action

 when :pick then pick(commit)

 when :revert then revert(commit)

 end

 sequencer.drop_command

 end

 sequencer.quit

 exit 0

 end

We’re now ready to add the revert command itself.

24.3.3. The revert command

The Command::Revert class needs to follow the same template set by Command::CherryPick
in order to work with the Sequencing module. We need to define merge_type,
store_commit_sequence, and then a revert method to be called by resume_sequencer.

lib/command/revert.rb

490

Reshaping history

module Command

 class Revert < Base

 include Sequencing

 include WriteCommit

 private

 def merge_type

 :revert

 end

First, let’s tackle storing the commit sequence. cherry-pick iterates over the input range from
the oldest commit forwards, so the changes are applied in the same order they were originally.
Since the revert commit reverses the changes, they need to be done in the reverse order from
how they were originally committed. For example, consider this history:

Figure 24.37. History with non-commutative commits

 f.txt = 1 f.txt = 2 f.txt = 3
 A B C
 o <---------- o <---------- o
 |
 [HEAD]

Running revert @~2.. should revert the latest two commits. The relevant diffs here are dBA
= { f.txt => [2, 1] } and dCB = { f.txt => [3, 2] }. A diff will only apply on top of
HEAD if its pre-image is the same as the state of HEAD; dBA cannot be applied because its pre-
image for f.txt is 2, whereas HEAD has f.txt = 3. We need to apply dCB to replace 3 with 2,
and then dBA to replace 2 with 1.

Figure 24.38. Reverting the last two commits

 f.txt = 1 f.txt = 2 f.txt = 3 f.txt = 2 f.txt = 1
 A B C -C -B
 o <---------- o <---------- o <---------- o <---------- o
 |
 [HEAD]

To have the best chance of a clean merge each time, we revert commits from the latest commit
backwards. RevList iterates commits in this order, so whereas CherryPick iterates RevList in
reverse, Revert uses the normal iteration order.

lib/command/revert.rb

 def store_commit_sequence

 commits = RevList.new(repo, @args, :walk => false)

 commits.each { |commit| sequencer.revert(commit) }

 end

Next, we define the revert method that resume_sequencer will call to revert each commit.
This is similar to the pick method, with a few differences. It uses its own helper method
revert_merge_inputs to construct the inputs for the Merge::Resolve, and it constructs a new

491

Reshaping history

commit message rather than reusing the one from the picked commit. It also lets the user edit
the message before saving the commit.

lib/command/revert.rb

 def revert(commit)

 inputs = revert_merge_inputs(commit)

 message = revert_commit_message(commit)

 resolve_merge(inputs)

 fail_on_conflict(inputs, message) if repo.index.conflict?

 author = current_author

 message = edit_revert_message(message)

 picked = Database::Commit.new([inputs.left_oid], write_tree.oid,

 author, author, message)

 finish_commit(picked)

 end

The revert_merge_inputs method embodies the core difference between revert and cherry-
pick. It’s almost the same as pick_merge_inputs, but it uses the picked commit as the base
of the merge, and its parent as the right input. Swapping these two arguments is all it takes
to undo a commit.

lib/command/revert.rb

 def revert_merge_inputs(commit)

 short = repo.database.short_oid(commit.oid)

 left_name = Refs::HEAD

 left_oid = repo.refs.read_head

 right_name = "parent of #{ short }... #{ commit.title_line.strip }"

 right_oid = commit.parent

 ::Merge::CherryPick.new(left_name, right_name,

 left_oid, right_oid,

 [commit.oid])

 end

The revert_commit_message and edit_revert_message helpers construct the default revert
commit message, and invoke the editor to let the user change it if desired.

lib/command/revert.rb

 def revert_commit_message(commit)

 <<~MESSAGE

 Revert "#{ commit.title_line.strip }"

 This reverts commit #{ commit.oid }.
 MESSAGE

 end

 def edit_revert_message(message)

 edit_file(commit_message_path) do |editor|

 editor.puts(message)

 editor.puts("")

 editor.note(Commit::COMMIT_NOTES)

492

Reshaping history

 end

 end

Having completed the Revert command class, we need to adjust a few bits of supporting code
so that we can resume a revert if it causes a merge conflict. Just as the cherry-pick command
stores pending commits in the file .git/CHERRY_PICK_HEAD, revert uses .git/REVERT_HEAD.
We just need to add an entry to PendingCommit::HEAD_FILES to reflect this and pass the type
argument :revert when we store pending commits.

lib/repository/pending_commit.rb

 HEAD_FILES = {

 :merge => "MERGE_HEAD",

 :cherry_pick => "CHERRY_PICK_HEAD",

 :revert => "REVERT_HEAD"

 }

We also need to expand the resume_merge method in WriteCommit so that if the pending commit
type is :revert, then we call write_revert_commit.

lib/command/shared/write_commit.rb

 def resume_merge(type)

 case type

 when :merge then write_merge_commit

 when :cherry_pick then write_cherry_pick_commit

 when :revert then write_revert_commit

 end

 exit 0

 end

The write_revert_commit method does much the same job as the write_cherry_pick_commit
method, except that we don’t reuse the author or message from the reverted commit. This means
we can use the write_commit method to build and store the commit, rather than constructing
it ourselves.

lib/command/shared/write_commit.rb

 def write_revert_commit

 handle_conflicted_index

 parents = [repo.refs.read_head]

 message = compose_merge_message

 write_commit(parents, message)

 pending_commit.clear(:revert)

 end

Finally, to handle the revert --continue command, the handle_continue method in
Sequencing needs to invoke this write_revert_commit method if the pending commit type
is :revert.

lib/command/shared/sequencing.rb

 def handle_continue

 repo.index.load

493

Reshaping history

 case pending_commit.merge_type

 when :cherry_pick then write_cherry_pick_commit

 when :revert then write_revert_commit

 end

 sequencer.load

 sequencer.drop_command

 resume_sequencer

 rescue Repository::PendingCommit::Error => error

 @stderr.puts "fatal: #{ error.message }"

 exit 128

 end

This completes the functionality of the revert command, and its sharing of the sequencer code
from cherry-pick means it can be paused and resumed successfully when a merge conflict
occurs.

Although revert is useful for quickly removing content, and demonstrates the power of the
merge system to reverse as well as apply changes, it is not appropriate for removing things like
passwords and other sensitive credentials you’ve accidentally published to a repository. If you
revert such a commit, anybody can still retrieve the content by checking out an older commit.

If you accidentally publish a security credential to a repository, you need to immediately change
that password so it cannot be used, and then completely remove it from the repository. In this
case, you will need to remove the commit using the technique we saw at the beginning of
Section 24.3, “Reverting existing commits”, then get the rest of your team to fetch your updated
history and rebase their own branches onto it. All branch pointers from which the removed
commit is reachable must also be removed; this will prevent the object being transmitted when
someone fetches from your repository5.

24.3.4. Pending commit status

Now that we have various commands that can lead to conflicted states, it would be helpful to
display this state to the user. Although status does list conflicted files, implying a merge is
in progress, it can be hard to remember what kind of merge is happening, how to resume it
correctly, and how to escape if it’s gone wrong. For this reason, Git includes content in the
status output to tell you what type of merge is happening, and what state it’s in.

Let’s add a new step to Command::Status#print_long_format that prints this information:

lib/command/status.rb

 def print_long_format

 print_branch_status
 print_pending_commit_status

 # ...

 end

print_pending_commit_status is essentially a big case statement that decides on some text
to display based on whether a merge, cherry-pick or revert is pending, and whether there are

5Chapter 28, Fetching content

494

Reshaping history

any conflicted files. In the case of a cherry-pick or revert, it also tells you which commit is
being picked, as these commands run through a sequence of commits rather than performing
a single merge operation.

lib/command/status.rb

 def print_pending_commit_status

 case repo.pending_commit.merge_type

 when :merge

 if @status.conflicts.empty?

 puts "All conflicts fixed but you are still merging."
 hint "use 'jit commit' to conclude merge"

 else

 puts "You have unmerged paths."
 hint "fix conflicts and run 'jit commit'"
 hint "use 'jit merge --abort' to abort the merge"

 end

 puts ""

 when :cherry_pick

 print_pending_type(:cherry_pick)

 when :revert

 print_pending_type(:revert)

 end

 end

 def print_pending_type(merge_type)

 oid = repo.pending_commit.merge_oid(merge_type)

 short = repo.database.short_oid(oid)

 op = merge_type.to_s.sub("_", "-")

 puts "You are currently #{ op }ing commit #{ short }."

 if @status.conflicts.empty?

 hint "all conflicts fixed: run 'jit #{ op } --continue'"

 else

 hint "fix conflicts and run 'jit #{ op } --continue'"

 end

 hint "use 'jit #{ op } --abort' to cancel the #{ op } operation"
 puts ""

 end

 def hint(message)

 puts " (#{ message })"

 end

24.3.5. Reverting merge commits

Throughout this chapter and the previous one, we’ve been assuming that every commit being
cherry-picked or reverted is a normal commit with a single parent. But it’s perfectly possible to
cherry-pick merge commits too, and to revert them. Since it uses the Commit#parent method,
the merge will always use the commit’s first parent.

In the case of revert, this means the command can be used to effectively undo a merge. Suppose
we have the following history in which M is a merge commit that was generated by running
merge topic while master was checked out at C.

495

Reshaping history

Figure 24.39. Branched and merged history

 A B C M F
 o <---- o <---- o <---- o <---- o
 \ / |
 \ / [master]
 \ D E /
 o <---- o
 |
 [topic]

If we want to undo the merge, we can run revert master^, and this will generate a new commit
that reverses the effect of M.

Figure 24.40. History with reverted merge

 A B C M F -M
 o <---- o <---- o <---- o <---- o <---- o
 \ / |
 \ / [master]
 \ D E /
 o <---- o
 |
 [topic]

But what is the effect of M, and what does that mean for the tree T–M? Well, revert will perform
a merge between the current HEAD (F) and the given commit’s first parent (C), with the commit
M as the base. So T–M = TM + dMF + dMC, the tree of M plus the difference from each side of
the merge. Since TM + dMF = TF by definition, this simplifies to T–M = TF + dMC. So the effect
of –M is to add dMC to TF.

Now, what is dMC? We know from Section 24.3.1, “Cherry-pick in reverse” that dMC = –dCM,
the inverse of the change from C to M. We also know that the merge M has TM = TC + dBE,
the tree of C plus the net difference from the merged branch. That means dBE is the difference
from C to M, and so dMC = –dBE = dEB — the inverse of the change introduced by the merged
branch. That means that reverting M undoes the effect of the merge and removes the changes
introduced in D and E, but does not remove the change from C.

Although for most graph search purposes the order of a commit’s parents does not matter, in
the case of cherry-pick and revert they matter a great deal, as they determine which side of
the merge we pick changes from. If we revert a commit generated by running merge <branch>,
the revert undoes the changes from <branch> and leaves anything that was reachable from HEAD
at that point alone.

Finally, we saw in the previous chapter that the cherry-pick command does not create a parent
link between the new commit and the one it’s derived from, as that would prevent a future
true merge from including the whole branch’s history. A similar problem occurs if we revert
a merge and then later decide we want to bring it back. What happens if we try to run merge
topic again following our revert commit?

496

Reshaping history

Figure 24.41. Attempting to re-merge a reverted branch

 A B C M F -M
 o <---- o <---- o <---- o <---- o <---- o <---- ? [master]
 \ / /
 \ / /
 \ D E / /
 o <---- o ----------------------'
 |
 [topic]

The base of this merge would be the common ancestor of –M and E, which is E itself — E
is an ancestor of –M. So this merge attempt ends up doing nothing. To get the changes from
the topic branch back, we can either cherry-pick its commits using a command like cherry-
pick @~3..topic:

Figure 24.42. Cherry-picking reverted changes

 A B C M F -M
 o <---- o <---- o <---- o <---- o <---- o
 \ / \
 \ / \
 \ D E / \ D' E'
 o <---- o o <---- o
 | |
 [topic] [master]

Or, we can revert the commit –M: since this commit applies the change dEB, reverting it will
produce the change dBE.

Figure 24.43. Reverting a reverted merge

 A B C M F -M –(–M)
 o <---- o <---- o <---- o <---- o <---- o <---- o
 \ / |
 \ / [master]
 \ D E /
 o <---- o
 |
 [topic]

Cherry-pick and revert commits are not special, they’re exactly the same as any other commit
and contain a pointer to a tree. The differences between those trees can always be recombined
in arbitrary ways to effect the desired outcome.

24.4. Stashing changes
One last application of commits and cherry-picking before we move on. Git includes a
command call stash6, which lets you store away uncommitted changes and retrieve them later.
We won’t implement this command, but it turns out it can easily be simulated with our existing
tools.

If you run git stash, any changes that have not been committed seem to vanish, and your
index and workspace return to the state that matches the current HEAD. If you take a look at the
file .git/refs/stash and the commits it points at, you’ll find out that it actually stores the

6https://git-scm.com/docs/git-stash

497

Reshaping history

uncommitted state as a pair of commits. Say HEAD points at the commit C below. If we run git
stash, the commits S1 and S2 will be created, but HEAD will remain pointing at C and the index
and workspace will match it.
Figure 24.44. Stored pair of stash commits

 A B C S2
 o <---- o <---- o <---- o [refs/stash]
 \ /
 \ /
 \ /
 o
 S1

S1 has C as its parent and has a message like index on <branch>: <ID> <message>, while S2
has both C and S1 as parents and its message says WIP (work in progress) instead of index. Git
has saved that state of the index (your uncommitted changes) and the workspace (your unstaged
changes) as commits, and linked them together to show what state they were based on.

We can simulate this process quite straightforwardly. Let’s say we begin in the following state,
and the index and workspace both differ from HEAD.
Figure 24.45. Initial work state

 A B C
 o <---- o <---- o
 |
 [master] <== [HEAD]

First, we’ll create a new branch called stash, and check it out.
Figure 24.46. Checking out the stash branch

$ jit branch stash
$ jit checkout stash

 A B C
 o <---- o <---- o
 |
 [master]
 [stash] <== [HEAD]

Then, we can save the current state of the index by running commit, creating the first stash
commit.
Figure 24.47. Committing the index state

$ jit commit --message "index on master"

 A B C
 o <---- o <---- o [master]
 \
 \
 \
 \ S1
 o [stash] <== [HEAD]

Next we need to put any unstaged changes into the index and make a second commit. We can’t
just use add . as that would include untracked files. Instead we need to select the files that have
been modified and add each one. The following command does just that:

498

Reshaping history

$ jit status --porcelain |
 grep "^.M" |
 cut -c 4- |
 xargs jit add

As we saw in Chapter 9, Status report, status --porcelain prints an M in the second column
for files modified in the workspace. grep "^.M" selects lines whose second character matches7,
and cut -c 4- selects the fourth to the last characters of each line8, essentially parsing the
filename out of the line. Altogether, this command passes all the files that are modified in the
workspace to the add command. A similar command, with D in place of M and rm in place of
add will remove all workspace-deleted files from the index. This state can then be committed
to preserve the state of the workspace.

Figure 24.48. Committing the workspace state

$ jit status --porcelain | grep "^.M" | cut -c 4- | xargs jit add
$ jit status --porcelain | grep "^.D" | cut -c 4- | xargs jit rm
$ jit commit --message "WIP on master"

 A B C
 o <---- o <---- o [master]
 \
 \
 \
 \ S1 S2
 o <---- o [stash] <== [HEAD]

Finally we want to return to the state HEAD was originally in, with the index and workspace in
sync, and we can do that by checking out our original branch.

Figure 24.49. Checking out the original branch

$ jit checkout master

 A B C
 o <---- o <---- o [master] <== [HEAD]
 \
 \
 \
 \ S1 S2
 o <---- o [stash]

Let’s say we’ve added a couple of commits to master and now want to recall our stashed
changes. The state of the history is now:

Figure 24.50. Adding more commits to master

 A B C D E
 o <---- o <---- o <---- o <---- o [master] <== [HEAD]
 \
 \
 \
 \ S1 S2
 o <---- o [stash]

7https://manpages.ubuntu.com/manpages/bionic/en/man1/grep.1.html
8https://manpages.ubuntu.com/manpages/bionic/en/man1/cut.1posix.html

499

Reshaping history

If we cherry-pick the stash branch onto the current tip of master, that will create two new
commits replicating the changes in S1 and S2.

Figure 24.51. Cherry-picking the stash commits

$ jit cherry-pick ..stash

 A B C D E S1' S2'
 o <---- o <---- o <---- o <---- o <---- o <---- o [master] <== [HEAD]
 \
 \
 \
 \ S1 S2
 o <---- o [stash]

The HEAD, index and workspace will now all match the state of S2'. To get back to the state we
would be in if we ran git stash apply or git stash pop, we want HEAD to point at E, the
index should match S1' and the workspace should match S2'.

With HEAD pointing at S2', if we run reset @^ then the HEAD and index will change to match S1',
but the workspace will be unaffected, so it still reflects the state of S2'. If we then run reset --
soft @^, HEAD will be moved to E but nothing else will change; the index will still reflect S1'.
So now the HEAD is in the right place, the index reflects the staged changes originally captured
in S1, and the workspace has the unstaged changes from S2.

Figure 24.52. Regenerating the uncommitted changes

$ jit reset @^
$ jit reset --soft @^

 A B C D E S1' S2'
 o <---- o <---- o <---- o <---- o <---- o <---- o
 \ |
 \ [master] <== [HEAD]
 \
 \ S1 S2
 o <---- o [stash]

At this point, the stash branch can be deleted, and the original and cherry-picked stash commits
become unreachable.

500

